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ABSTRACT 

Large areas of marine and coastal environments have been protected to satisfy diverse policy goals, 

but there has been limited work understanding the economic impacts of such closures. While 

methods for establishing causal impacts are prevalent, less attention has been paid to explaining 

the mechanisms through which the causal relationship came to be. Understanding mechanisms is 

crucial for designing policies that foster the mechanisms that achieve the intended objectives of 

marine reserves and mitigate the mechanisms that do not. We estimate the treatment effect of a 

large marine reserve on the net earnings of a commercial fishery using difference-in-differences 

and synthetic-control designs, and decompose the treatment effect into its constituent mechanisms 

through structural equation modeling. We find minimal evidence that closing the marine reserve 

to fishing had a significant economic cost for the industry; however, several counteracting 

mechanisms are critical for explaining the effect and for generalizing to other settings. 
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I. INTRODUCTION 

Program evaluation is a critical element of evidence-based policy making for natural resource 

and environmental management (Ferraro 2009). When conducted properly, program evaluations 

assess the degree to which changes in an outcome variable can be attributed solely to a particular 

policy, and are therefore essential for eliminating any plausible explanations of the outcomes that 

are unrelated to the policy. Most of the program evaluation literature is devoted to establishing 

whether a program causally affected an outcome variable; in contrast, relatively few evaluations 

explain how or why such a causal relationship came to be (Imai et al. 2011). Understanding the 

mechanisms through which a program influences an outcome variable is important for both testing 

economic theory and for generalizing results beyond the setting at hand (Heckman and Smith 

1995). Moreover, understanding mechanisms can aid policy makers in designing policies that 

foster the mechanisms that achieve the intended policy objectives and mitigate the mechanisms 

that do not (Ferraro and Hanauer 2014). 

We estimate the causal short-run economic impacts and the underlying mechanisms associated 

with a large marine reserve for the protection of the endangered western stock of Steller sea lions 

(SSL) in U. S. waters off the coast of Alaska. Marine reserves, or spatial closures more generally, 

prohibit some or all fishing in a defined geographic area for a specific period of time, and are 

among the primary tools of marine resource managers in the world. Indeed, the United Nations, 

national and state governments, and other management agencies having formal goals of placing 

10-30 percent of the oceans in marine reserves (Wabnitz, Andrefouet, and Muller-Karger 2010). 

The potential long-term benefits of marine reserves, such as the protection of vulnerable species 

(Hooker and Gerber 2004) and/or the spillover effects of rebuilt stocks (e.g., Abesamis and Russ 

2005), are well known and have been discussed thoroughly (e.g., Gaines et al. 2010). However, 
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empirical estimates of the short-run costs incurred by the commercial fishing industry are relatively 

scarce. Marine reserves can change the opportunities available to fishers—for instance, by forcing 

them out of productive fishing areas and/or constraining their ability to balance multispecies catch 

compositions in accordance with annual species-specific harvest quotas (Abbott, Haynie, and 

Reimer 2015). A marine reserve may therefore increase short-run costs or reduce revenues, 

possibly outweighing the benefits of the reserve. Thus, evaluating the short-run costs incurred by 

the fishing industry relative to any benefits of marine reserves is a critical element for evidence-

based policy making for ecosystem-based fisheries management (Smith et al. 2010;  Sanchirico et 

al. 2013).  

Previous evaluations of the short-run cost of marine reserves are predominantly ex ante 

analyses, which rely on predictive models of how fishers adjust their behavior in response to a 

potential spatial closure (e.g., Holland and Brazee 1996;  Hannesson 1998;  Sanchirico and Wilen 

2001;  Smith and Wilen 2003;  Berman 2006;  Haynie and Layton 2010).  Unfortunately, 

evaluating the impact of a marine reserve ex post is complicated by the fact that reserves are not 

implemented in a manner that facilitates the measurement of their causal impact (Smith, Zhang, 

and Coleman 2006). For instance, the implementation of a marine reserve rarely generates clear 

“treated” and “control” groups in which one group of fishermen is not permitted to fish in an area 

while others are, thereby impeding estimation of the counterfactual outcomes that would have 

occurred without the closure. In addition, marine reserves typically do not occur in isolation; other 

factors that influence fishing-related outcomes inevitably change simultaneously, such as total 

allowable catches (TACs), prices, abundances, etc. Thus, simply using outcomes from before and 

after implementation of a marine reserve may not isolate the effect of the closure from other 

simultaneous changes. 
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Our evaluation of the short-run economic impacts of a spatial closure for SSL protection 

addresses several important issues that have impeded ex post evaluations of marine reserves in the 

past, and makes several contributions to both the resource economics and program evaluation 

literature. First, the policy intervention directly affected the annual fishing operations for only a 

subset of comparable fishing vessels, creating a natural group of control vessels that we can use to 

estimate the counterfactual evolution of relevant outcome variables (e.g., net revenue) for the 

affected vessels. To this end, we conduct a comparative case study which estimates the evolution 

of an outcome of interest for units (here vessels) affected by a particular intervention and compare 

it to the evolution of the same outcome estimated for some control group of unaffected vessels 

(Abadie, Diamond and Hainmueller, 2010). Comparative case studies for evaluating policy 

interventions are relatively rare in the fisheries economics literature due to the frequent lack of 

unaffected and comparable units for constructing a counterfactual.1  

Second, we are able to estimate the economic impacts of the spatial closure using a unique 

confidential dataset of annual fishing revenues and costs. Extensive cost data are rarely collected 

from the fishing industry. Indeed, most ex post policy evaluations resort to using proxies for net 

impacts, such as gross revenues, harvests, or welfare estimates from random utility models. Our 

unique dataset allows us to estimate net impacts using a measure of net revenues—a combination 

of fishing revenues and variable costs associated with fishing operations. 

Third, we employ empirical methods that allow us to relax some of the limiting features of 

traditional methods for conducting comparative case studies, such as the standard difference-in-

differences (DnD) estimator. In particular, we estimate the average treatment effect on the treated 

                                                 

1 Some notable exceptions of comparative case studies for evaluating fishery policy interventions include Scheld, 

Anderson, and Uchida (2012) and Kroetz, Sanchirico, and Lew (2015). Other comparative case study examples in 

fisheries for evaluating non-policy shocks include Abbott and Wilen (2010) and Jardine, Lin, and Sanchirico (2014). 
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(ATT) of the spatial closure using propensity-score-weighted (PSW) difference-in-differences 

(Heckman, Ichimura, and Todd 1997;  Hirano, Imbens, and Ridder 2003), which more closely 

balances the treated and control groups based on pre-intervention characteristics and initial 

conditions, and the synthetic control method (SCM) (Abadie and Gardeazabal 2003;  Abadie, 

Diamond, and Hainmueller 2010), which allows for vessel-specific comparison (or synthetic) units 

and the effects of unobserved vessel-specific factors to vary with time. Importantly, both the PSW 

and the SCM are transparent and data-driven processes for constructing a comparison group and 

easily allow the researcher to explore whether the comparison group is sufficiently similar to the 

treated group for causal inference, a feature that is obscured in the difference-in-differences model 

(Abadie, Diamond, and Hainmueller 2014). 

Finally, we decompose the overall effect of the spatial closure on net revenue using a mediation 

analysis to identify the mechanisms through which the treatment impacts the treated units (Baron 

and Kenny 1986;  Heckman and Pinto 2015). To accomplish this, we use a structural equation 

model (SEM) to trace out the paths through which the spatial closure affects net revenue (Sobel 

1987), decomposing the overall effect into multiple mechanisms. By doing so, we are able to 

identify what the causal impacts would have been had the marine reserve been implemented in a 

different institutional and/or biological setting, a feature that is critical for extrapolating results to 

other settings. Despite the importance for evidence-based policy making, there are relatively few 

examples of decomposing the overall treatment effect into causal mechanisms in the economics 

literature (Ferraro and Hanauer 2014). 

Our results indicate that there is minimal evidence of an overall negative effect of the spatial 

closure on the net revenue of affected vessels, a finding that is consistent across all modeling 

approaches. However, our decomposition of the overall treatment effect demonstrates that the 
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spatial closure influences net revenue through multiple counteracting mechanisms: a negative 

“quota mechanism,” which arises from a reduction in the harvest quotas associated with the closed 

area; a negative “displacement mechanism,” which arises from displacing vessels from historically 

productive fishing grounds; and a positive “value mechanism,” which arises from the ability of 

vessels to shift their production activities to increase the gross value of their production.  These 

results confirm the common verdict in the literature: that the short-run cost of a marine reserve 

will depend on the opportunities outside of the closure (Smith et al. 2010 and citations within). In 

our case, opportunities to shift fishing operations to target other valuable species outside of the 

closure, whose quotas were either nonexistent or previously not exhausted, are critical for 

offsetting the costs associated with displacing vessels from their historical fishing grounds. More 

generally, our work demonstrates that under certain conditions, environmental protection may be 

considerably less costly in the short-run than ex-ante analyses suggest.   

II.  BACKGROUND  

II.A.  Steller Sea Lion Closures 

Steller sea lions (Eumetopias jubatus) inhabit the North Pacific Ocean, ranging from northern 

Japan to central California. The western stock of SSL (hereafter any reference to “SSL” refers to 

the western stock) is mainly found in the Central and Western Gulf of Alaska (GOA) and the 

Aleutian Islands (AI;  Figure I). The U.S. National Marine Fisheries Service (NMFS) has employed 

some form of protective measures for SSL conservation in the AI since the late 1980s. In 1990, 

the SSL was listed as “threatened” under the U.S. Endangered Species Act (ESA) as a result of a 

steep decline in the population starting in the late 1970s (see Berman 2008). Due to continued 

declines, the SSL was eventually declared “endangered” in 1992 (National Oceanic and 

Atmospheric Administration 1997). The current scientific understanding of the decline in the 
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SSL population suggests that fishery removals of SSL prey species could thwart the recovery 

of the SSL population. The SSL prey on the primary species targeted by the commercial 

fisheries in the AI  (Atka mackerel and Pacific cod) and the decline in the SSL population 

coincided with a sharp increase in commercial fishing for groundfish in the North Pacific 

in 1976 (National Oceanic and Atmospheric Administration 2014). The federally-managed 

groundfish fisheries off Alaska are some of the Nation’s most important in terms of quantity of 

fish caught and value of products produced—a significant portion of which takes place in waters 

adjacent to the AI, particularly for species such as Atka mackerel, Pacific ocean perch, and Pacific 

cod.2 

Historically, protective measures for SSL conservation have included spatial closures that 

restrict groundfish fisheries in areas near SSL critical habitat (e.g., haulouts, rookeries, and 

foraging areas; Figure I); special harvest control rules, whereby pollock, Atka mackerel, or Pacific 

cod fisheries are closed if biomass falls to a certain proportion of its unfished level; and seasonal 

and spatial apportionment of the TACs (National Oceanic and Atmospheric Administration 2002). 

In particular, the TACs for both Atka mackerel and Pacific ocean perch are delineated into three 

large regions in the AI: Western (543), Central (542), and Eastern (541).  

In 2010, NMFS completed an ESA Section 7 consultation on the effects of the Alaska 

groundfish fisheries on the SSL population and on its designated critical habitat. Based on the best 

available information, the consultation resulted in a biological opinion that previously-

implemented SSL protection measures could not ensure that the groundfish fisheries would not 

jeopardize the continued existence of the SSL population (National Oceanic and Atmospheric 

                                                 

2 Catch from the federally-managed groundfish fisheries off Alaska totaled 2.3 million tons and $933.4 million in 

ex-vessel value in 2014 (Fissel et al. 2015), and accounted for 53% and 17%, respectively, of the total weight and 

ex-vessel value of U.S. domestic landings in 2014 (National Marine Fisheries Service 2016). 
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Administration 2010). As a result, additional protection measures were placed on groundfish 

fishing in the Western AI in an attempt to protect the SSL population.  

The 2011 protection measures, henceforth called “the closure”, closed management area 543 

and critical habitat areas in management area 542 to Atka mackerel and Pacific cod fishing (Figure 

I), effectively creating a large marine reserve that prohibited certain fishing activities. In addition, 

the closure sharply reduced the overall TAC for Atka mackerel in areas 542 and 543 (Figure A-I 

in the Appendix).3 The Atka mackerel fishery primarily consists of one fleet of catcher processor 

(CP) trawlers that receives quota shares to over 80% of the AI Atka mackerel TAC under the 

Amendment 80 (A80) program. Between 2008 and 2010, seven CP trawlers harvested an annual 

average of 61,000 metric tons (mt) of Atka mackerel (US$61.6 million wholesale) in the AI, of 

which approximately 25% took place in management area 543 (National Oceanic and Atmospheric 

Administration 2014).  Pacific cod fisheries in the AI, on the other hand, are prosecuted by a variety 

of different vessel types: A80 CP trawlers, non-trawl (hook-and-line and pot) CPs, trawl catcher 

vessels (CVs), and non-trawl (hook-and-line, pot, and jig) CVs. Between 2008 and 2010, 

approximately 24,000 mt of Pacific cod (US$24.1 million wholesale) was harvested in the AI, on 

average, of which 14% was harvested by 11 trawl CPs, 29% by 13 non-trawl CPs, and 57% by 22 

trawl CVs (National Oceanic and Atmospheric Administration 2014).4  Altogether, the closure 

was estimated to put US$27-47 million in gross wholesale revenues “at risk” (annually) for the 

A80 trawl CPs, US$11-14 million for the non-trawl CPs, and $9-12 million for the trawl CVs 

(National Oceanic and Atmospheric Administration 2014). 

                                                 

3 Critical habitat (CH) areas represent 20 nautical mile (nm) buffer zones around all major SSL haulouts and 

rookeries in the AI. The retention ban within CH areas in management area 542 after 2011 was comprehensive, 

except for a small area of CH (between 10 and 20 nm) between 179° and 178° longitude. 
4 Less than 0.1% of the total harvest Pacific cod in the AI is attributed to the non-trawl CVs during this period.  
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II.B. The Amendment 80 Fleet 

For our evaluation, we focus only on the CP trawlers in the A80 program for the following 

reasons: i) the CP trawlers were the dominant fleet across the affected AI groundfish fisheries 

(particularly Atka mackerel), in terms of both harvests and wholesale revenues, with a significant 

portion of fishing activity taking place in area 543 prior to 2011; ii ) in contrast to the other fleets, 

the A80 CP trawlers have had complete onboard observer coverage since 2008, giving us a 

comprehensive dataset of all fishing activity for all vessels that participate in the A80 program;5 

iii ) unlike the other fleets, all A80 participants must submit an Economic Data Report on an annual 

basis, providing a unique dataset comprised of vessel-level annual revenue and costs derived from 

vessel activity in the North Pacific groundfish fisheries; and iv) since only a portion of the vessels 

in the A80 fleet targeted Atka mackerel and Pacific cod in the AI, the A80 fleet provides a unique 

opportunity to form a counterfactual (or control group) for the vessels that were required to halt 

fishing for Atka mackerel and Pacific cod in area 543 after 2011. 

A80 CPs use non-pelagic (“bottom”) trawl gear to target groundfish in the federal waters of 

the United States North Pacific.6 Vessels in the A80 fleet embark on trips of 1-2 weeks in length, 

processing harvested fish onboard. Processing is typically minimal, usually involving “heading 

and gutting” the fish, freezing them, and delivering them to brokers or wholesalers for direct sale 

or further processing. Since the early 2000s, the fleet has had twenty-three participating vessels.7 

                                                 

5 Under the North Pacific Groundfish Observer Program, onboard observers record the deployment and retrieval 

location and times for every trawl, as well as additional information such as the total catch and tow depth. Observers 

also randomly select hauls for species composition sampling. See http://www.afsc.noaa.gov/FMA/default.htm for 

more information. 
6 The A80 fleet is comprised of vessels that have historically caught groundfish other than pollock, such as flatfish 

(e.g., rock sole, yellowfin sole, flathead sole), Atka mackerel, and Pacific ocean perch. 
7 Originally, 28 CP vessels were eligible for the A80 program. However, three of these vessels have sunk (including 

one in 2008, after Amendment 80 was implemented), and three others have not fished in Alaska since 2003 

(Northern Economics 2014). Since 2013, 18 vessels have participated in the fishery. 

http://www.afsc.noaa.gov/FMA/default.htm
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The fleet’s name signifies the passage of Amendment 80 to the Bering Sea/Aleutian Islands 

(BSAI) Groundfish Fishery Management Plan, which was implemented in 2008.  The provisions 

of A80 were intended to facilitate increased target catch and profits, reduce bycatch and discards, 

and increase flexibility while complying with target and prohibited species TACs. A80 resulted in 

two major changes to fishery regulations. First, A80 granted a share of the total A80 TAC for the 

six primary target species (yellowfin sole, rock sole, flathead sole, Pacific cod, Atka mackerel, and 

Pacific ocean perch) to each vessel based on its catch history. Second, vessels could either vest 

their shares in a cooperative formed by participating members or participate in a limited-access 

fishery. Cooperatives are given considerable flexibility as to how quotas are allocated among 

members. Leasing arrangements and/or non-arm’s-length methods of reallocation within the 

cooperative are all feasible, and trading between cooperatives is allowed. Vessels that chose to 

participate in the limited-access fishery had a share of their historic proportion of target species 

put in a common pool that is available to all vessels in the limited-access fishery, similar to pre-

A80 management. In addition, cooperatives receive shares of “prohibited species catch” (PSC) 

TACs according to their holdings of target species, and all vessels in the limited access fishery 

share the same overall PSC caps based on a proportion of catch history of vessels in the limited 

access fishery. In practice, companies have primarily fished their own target and PSC allocations, 

although recently there have been sales and more frequent exchanges of quota of one species for 

another between companies.8 

Immediately following the implementation of A80, a subset of the fleet (sixteen vessels, seven 

companies) formed a single cooperative (Alaska Seafood Cooperative, hereafter ASC), while the 

                                                 

8 A company’s total catch for each target and prohibited species rarely exceeds its allocated quota (not shown due to 

confidentiality), suggesting that companies primarily fish their own target and PSC allocations. 
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remaining seven vessels (three companies) elected to remain in the limited-access sector. In 2011, 

all vessels in the limited-access sector formed a second cooperative (Alaska Groundfish 

Cooperative, hereafter AGC), eliminating the limited-access sector. There has been some 

consolidation in the fleet since the implementation of A80. In 2011, sixteen CPs (five companies) 

actively fished as part of ASC, while only four vessels (one company) actively fished as part of 

AGC.  

III.  METHODS 

To evaluate the impacts of the closure for protecting the SSL population, we conduct a 

comparative case study, which estimates the evolution of an outcome for vessels affected by the 

closures and compare it to the evolution of the same outcome estimated for a control group of 

unaffected vessels (e.g., Card 1990;  Card and Krueger 1994). Central to our identification strategy 

is the fact that the closure interfered in the annual fishing plans of only a subset of the vessels in 

the A80 fleet—namely those vessels that targeted Atka mackerel and Pacific cod in the AI prior 

to 2011. 9 Of the ten vessels that caught and retained Atka mackerel and Pacific cod in the AI prior 

to 2011, seven actively targeted these species in area 543, the area in which fishing was most 

restricted by the 2011 closure (Table A-I in the Appendix). Indeed, these seven vessels spent 15% 

of their effort (measured in trawling hours) in area 543 prior to 2011 in comparison to <0.1% for 

the remaining thirteen A80 vessels (Table I). Moreover, these seven vessels harvested 98% of all 

Atka mackerel caught by A80 vessels in the AI prior to 2011, with Atka mackerel comprising 43% 

of their per-vessel wholesale revenues, on average. In contrast, Atka mackerel accounted for an 

average of only 0.7% of wholesale revenues for the remaining A80 vessels (Table I). Thus, the 

                                                 

9 Abbott and Wilen (2010) follow a similar identification strategy for the same fleet to estimate the effects of a 

voluntary program for bycatch reduction starting in 1995. 
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seven vessels actively targeting Atka mackerel and Pacific cod in area 543 prior to 2011 were 

exposed to the closure by a distinctly greater degree, and therefore serve as the “treated” group for 

our analysis. Our “control” group consists of the eleven A80 vessels that did not target Atka 

mackerel and Pacific cod in area 543 and also fished in all years of the sample.10 

III.A. Data 

We use a combination of confidential and publicly available data sets for our analysis. 

Confidential data comes from Economic Data Reports (EDRs), which are mandatory annual 

reporting requirements for all A80 participants, and provide detailed data on vessel-specific costs, 

earnings, employment, quota transfers, and capital improvements.11 We also use confidential data 

from vessel-level production reports, which provide the production weight of final products for 

each target species; commercial operator annual reports, which provide information on annual 

product prices from each vessel; and data from onboard observers. Publicly available data sets 

include annual vessel-specific quota allocations for each of the A80 target and bycatch species.12  

We use annual net revenue as reported in the EDRs for our main outcome variable for 

measuring the economic impacts of the closure. We compute net revenue as annual gross revenue 

minus annual variable costs. Revenue includes product sales, income from other sources (e.g., 

tendering, scientific charters, etc.), and income from leasing quota shares to other vessels. Variable 

costs include (among other things) costs associated with labor, fuel, maintenance and repair, food, 

                                                 

10 Note that two A80 vessels participated in at least one but not all years of the sample, and are thus not considered 

in this analysis out of concern that the lack of full participation compromises their comparability to the vessels in the 

treatment group. Including these vessels does not meaningfully change our results. 
11 Further information regarding the EDR data collection program, including EDR forms, protocols, and results of 

data quality assessment and controls, is available at http://www.psmfc.org/am80edr/.  
12 Wholesale price data is available at http://www.afsc.noaa.gov/refm/Socioeconomics/SAFE/groundfish.php#data. 

Annual quota allocations are available at https://alaskafisheries.noaa.gov/permits-

licenses?field_fishery_pm_value=Amendment+80.  

http://www.psmfc.org/am80edr/
http://www.afsc.noaa.gov/refm/Socioeconomics/SAFE/groundfish.php#data
https://alaskafisheries.noaa.gov/permits-licenses?field_fishery_pm_value=Amendment+80
https://alaskafisheries.noaa.gov/permits-licenses?field_fishery_pm_value=Amendment+80
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packaging, and fish taxes.13 As we describe in detail below, we also use the following variables as 

part of our mediation analysis, which explores the mechanisms through which the closure impacted 

affected vessels: i) the total annual amount of fish harvested; ii) the total annual amount of quota 

across all six target species allocated to an individual vessel at the beginning of the year; and iii) 

the average annual wholesale price received by each vessel.14  

III.B. Identification of Causal Effects 

Our primary goal is to estimate the effect of the closure on the net revenue of the A80 CP 

trawlers. For the estimated effect to be interpreted as causal, care must be taken to address concerns 

over selection bias—i.e., the concern that vessels targeting Atka mackerel and Pacific cod in area 

543 prior to the closure are fundamentally different from those that did not in ways that also 

influence changes in net revenue over time. Generally speaking, selection bias problems arise from 

the existence of a “back-door path” between the treatment variable (closure) and the outcome 

variable (net revenue), as depicted in the directed acyclic graph in Figure IIa, where the directed 

edge x y  signifies that x causes y (Pearl 1995). As drawn, the causal effect 

closure net revenue  (edge a) is confounded by the “back-door path” 

closure net revenuee«   since the unobservable variable Ů influences both net revenue and 

closure. For example, we would expect that treated vessels differ in many ways that also influence 

net revenue—on average, they tend to be significantly larger, have more quota, specialize in 

targeting groundfish species in the Aleutian Islands, and have particular types of skill, experience, 

                                                 

13 For an explicit list of all the elements included in gross revenue and variable cost, see Tables 3 and 5, 

respectively, in the EDR forms at http://www.psmfc.org/am80edr/. Due to the lumpy inter-annual nature of capital 

expenditures, such as those associated with gear and processing equipment (Table 4 of EDR), we exclude them 

when calculating net revenue. 
14 Average wholesale price is computed as the sum of annual production values over all species (i.e., production 

weight (mt) times product price ($/mt)) divided by the annual production weight (mt). 

http://www.psmfc.org/am80edr/
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and knowledge, including awareness of markets for Atka mackerel. In general, there are many 

potential strategies for isolating the causal effect from the confounding influences of an 

unobserved variable Ů. For instance, when selection is based on observable variables, selection 

bias can be addressed by conditioning on variables that satisfy the “back-door criterion” (e.g., 

regression or matching methods). If instead selection is based on unobservable variables, other 

strategies that do not rely on conditioning can be used, such as instrumental variables or difference-

in-differences (Angrist and Pischke 2009;  Morgan and Winship 2014).  

We use a variety of estimation procedures for identifying the causal effect of the spatial closure 

on the treated vessels, including difference-in-differences (DnD), propensity-score-weighted 

(PSW) differences-in-differences, and the synthetic control method (SCM). The key identifying 

assumption for our analysis is that the confounding variable Ů in Figure IIa can be broken up into 

the following four components: a vector of observable variables X that vary over time and vessel 

and cause both net revenue and the treatment assignment; an unobservable vessel-specific and 

time-invariant variable  ʟthat causes both net revenue and the treatment assignment (e.g., skill, 

expertise, historical fishing patterns, etc.); an unobservable time-varying factor ɗ that influences 

the net revenue equally across all vessels (e.g., global markets, regulations, sea ice patterns, etc.); 

and an unobservable variable ɜ that varies over time and vessel and directly impacts only net 

revenue and not the treatment assignment. This latter assumption is the key identifying assumption 

for isolating the effect of the closure on net revenue as it allows us to block the “back-door path” 

, ,closure X v net revenuef q« ª  by conditioning on X and “differencing away”  ʟand ɗ.15  

   There is good reason to believe that the above identifying assumption is satisfied for our case 

                                                 

15 Note that the SCM is more flexible than the DND and PSW approaches as it allows the effects of unobserved 

vessel-specific factors to vary with time (Abadie, Diamond, and Hainmueller 2010). 
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study. The vessels in both the treated and control groups are comparable: they use bottom trawl 

gear, they are catcher processors, nearly all their products are in either headed and gutted form or 

whole fish (Figure A-II ), they have quota for many (but not all) of the same species (Figure A-III ), 

they fish in many of the same areas (Table I), and are subject to the same regulatory restrictions. 

However, as noted above, the treated vessels also differ from those in the control group in other 

ways: they are larger, they have more output quota with compositions that are more heavily 

concentrated in Atka mackerel and Pacific ocean perch rather than flatfish, and they pursue 

different targeting strategies—e.g., they spend more time targeting Atka mackerel in the AI (Table 

I). These differences, however, do not necessarily violate the assumptions necessary for the 

treatment effect estimator to be unbiased. In particular, unbiasedness requires that the trends in net 

revenue be the same in the absence of the treatment (Angrist and Pischke 2009).16 Time series for 

the multiple outcomes of interest in our evaluation provide some evidence that the common trend 

assumption is satisfied (Figure III ), suggesting that many of the differences between the treated 

and the control units are likely captured by the time-invariant vessel effects ʟ.17 One notable 

exception, however, is that because the treated group is more specialized in Atka mackerel and 

Pacific ocean perch, any exogenous shock to the price or TAC of these species at the time of the 

closure would likely confound our estimate of the treatment effect. We discuss this issue further, 

                                                 

16 This is often referred to as the “common trends” assumption (Angrist and Pischke 2009). Note that this 

assumption can be relaxed to allow for group-specific trends (Blundell and MaCurdy 1999).  
17 We are conscience of the fact that having only three pre-intervention years is not ideal for supporting our claim of 

parallel trends; however, we are limited by the fact that our main outcome variable net revenue is constructed using 

information from the EDRs, which were not collected until 2008. Fortunately, we do have time series for several 

relevant intermediary outcome variables—i.e., wholesale revenue, harvest, and wholesale price—that go back to 

1992, and can therefore be used to shed light on whether our parallel trend assumption is valid. Figure A-IV  shows 

that treated- and control-group averages for the intermediary variables do in fact move in parallel fashion, giving us 

some confidence that any differences between the treated and control groups that differentially affect our outcome 

variables can be largely captured by time-invariant fixed effects. This finding is further supported by the fact that we 

cannot reject (at the 10% level) the null hypothesis that each intermediary variable followed the same linear time 

trend between 1992 and 2010. See Appendix B.1. for details. 



15 

along with a possible way to address it, below.  

Our estimators rely on several other assumptions for identification. First, the composition of 

both the treatment and control groups must remain stable before and after the policy change or 

there exists the possibility of bias from vessels self-selecting to leave the treatment or control 

groups in response to the policy (Blundell and MaCurdy 1999). Our sample includes only those 

A80 vessels that fished before and after the closure was implemented. We assign vessels that 

targeted Atka mackerel to the treated group and all other A80 vessels to the control group, and 

these assignments remain constant across all years. Thus, the compositions of the treated and the 

control groups remain stable by design. 

Second, the treatment should not “contaminate”, or indirectly impact, the control group 

through spillover effects; otherwise, the control group will not serve as a good representation of 

the counterfactual outcomes for the treated units in the absence of the policy change. One potential 

source of contamination resulting from the closure is congestion-related effects from increased 

fishing effort in the Bering Sea as treated vessels shifted effort towards other directed fisheries, 

such as yellowfin and rock sole. Indeed, if increased fishing effort in the Bering Sea resulted in 

any negative congestion-related effects on the control units, in terms of crowded fishing grounds 

or local stock depletion, then the magnitude of our estimator will be biased downwards. Given the 

enormous size of the Bering Sea, it may seem unlikely for there to be any congestion effects arising 

from any increased fishing effort of seven vessels; however, targeted species are not uniformly 

distributed across space, and many have relatively concentrated distributions in particular areas 

and seasons (e.g., rock sole). Another potential source of contamination stems from the 

transferability of quota across vessels: if the closure induced treated vessels to change their quota 

leasing patterns, perhaps to generate additional revenue to offset the cost of the closure, then this 
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could directly impact control vessels through increased exchange of quota.18 We explore the 

possibility of contamination via congestion and quota transfers in Section IV.C, and conclude that 

spillover effects are likely small and inconsequential for our results. 

III.C. Causal Mechanisms   

Even if our estimation strategy suggests that the protective measures had a causal effect on 

treated vessels’ net revenue, however, it does not tell us how or why. This is relevant for our case 

study given that there are multiple mechanisms through which closure can influence treated 

vessels’ net revenue (Figure IIb). The closure directly reduced the amount of quota allocated to 

the treated vessels (edge d) by substantially reducing the TACs for Atka mackerel in management 

areas 542 and 543 (Figure A-I).19 If a reduction in quota leads to reduced harvest (edge g), then 

quota will likely have a negative indirect effect on net revenue through reduced harvest and 

revenue (edges j and l), and a positive indirect effect on net revenue through cost due to reduced 

harvesting and production costs (edges k and m). Furthermore, a reduction in quota could have a 

positive indirect effect on net revenue if , for example, the A80 fleet possesses a large share of the 

world product market so that reduced harvest leads to an improved wholesale price (edges h, i, 

and l).20 This so-called “quota mechanism” of the SSL protective measures stands in contrast to 

the “displacement mechanism,” which affects net revenue independent of quota through the 

displacement of the treated vessels from their historically productive fishing grounds (Horrace and 

                                                 

18 We thank an anonymous referee for pointing this out. 
19 The direct effect of x on y is the influence of x on y holding all intermediary variables between the two variables 

constant. Thus, the direct effect is represented by the directed arrow directly linking x and y,..x y .., which is not 

intercepted by intermediaries (Pearl 2001). In contrast, the indirect effect of x on y is the influence of x on y through 

intervening variables, and is represented by at least two directed arrows linking x and y through an intermediate 

variable, for example 
 
x z y.   

20 A80 harvests for many species, particularly Atka mackerel, make up a sizable portion of their respective world 

markets. For instance, harvests by the A80 fleet between 2011 and 2013 accounted for 25% of the global supply for 

Atka mackerel, most of which ends up in Japan with few viable substitutes (Alaska Fisheries Science Center 2015). 

See Figure A-V for price trends. 
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Schnier 2010). For instance, if the Atka mackerel and Pacific cod closures push the treated vessels 

into less productive fishing locations, closure may have an adverse direct effect on harvest (edge 

e) and cost (edge f), which in turn affect net revenue directly and indirectly. The potential cost of 

the closure could be offset through a “value mechanism” if, for example, treated vessels can 

improve the average price they receive (edge c) by shifting their production to higher-valued 

species and/or increase their revenue (edge b) by shifting their efforts towards other activities, such 

as tendering and/or acting as a floating processor that accepts deliveries from smaller catcher 

vessels. 

In recent years, greater attention has been given to identifying the causal mechanisms that 

underlie the overall causal effect of an intervention (e.g., Pearl 2000). In particular, mediation 

analysis explores the existence of causal mechanisms by decomposing the overall causal effect 

(e.g., edge a in Figure IIa) into its individual components in order to explain why and how the 

treatment worked (e.g., Imai et al. 2011;  Heckman and Pinto 2015;  Keele 2015). Mediation 

analysis is important for our analysis because marine reserves are implemented in a variety of 

economic, biological, and institutional settings, all of which influence the degree of economic 

impact on the fishing industry. Understanding mechanisms here allows us to better understand the 

impacts of marine reserves across diverse settings. For example, separating the “displacement 

mechanism” from the “quota mechanism” provides insight into the potential impacts of 

implementing closures in management regions that do not have area-specific quotas. Further, 

mediation analysis allows us to address the issue of controlling for factors, such as an exogenous 

shock to the price or TAC of Atka mackerel or Pacific ocean perch, that may confound our overall 

estimate of the closure by disproportionately affecting the treated vessels at the time of the 

intervention.  As we demonstrate below, our mediation analysis isolates the path through which 
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the confounding factor influences net revenue, allowing us to hold this path constant and estimate 

the treatment effect without the influence of the confounding factor.     

III.D.  The Differences-in-Difference Estimator 

Consider the following general DnD model for an outcome variable of interest, Yit: 

 ,DnD

it i t t i t it itY treat post X vf q d b¡= + + ³ + +  (1) 

where the variable treati is a dummy variable equal to one if vessel i is a member of the treated 

group that was exposed to the closure, postt is a dummy variable equal to one if year t take place 

after the intervention, Xit, iʟ, and ɗt are as defined in the previous section, and 
DnD

td is the DnD 

treatment effect, which is allowed to take on distinct values for each post-intervention year.21  

The DnD model provides an unbiased estimate of the average treatment effect if  the 

unobserved selection bias is time invariant and that the control units serve as a good comparison 

group for the treated units. As pointed out by Abadie, Diamond, and Hainmueller (2014), the 

selection of control units is perhaps the most crucial step in comparative case studies: if control 

units are not sufficiently similar to the treated units, then any difference in outcomes between these 

two sets of units may merely reflect differences in their characteristics. Implicitly, the DnD 

estimator assumes that units in the control group are equally comparable to units in the treated 

group, on average. 

We address this issue by estimating a weighted version of the DnD model in equation (1), 

where the weights are chosen to more closely balance the treated and control groups based on their 

pre-intervention outcomes, thereby creating a comparison group that is more comparable to the 

                                                 

21 Note that by interacting treat and post in equation (1), we are identifying the annual treatment effects under the 

assumption that the difference in the average trend between the treated and control groups is equal to zero over the 

pre-intervention years. 
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treated group. Our weighting scheme is based on the propensity score, which is the predicted 

probability of being exposed to the treatment conditional on observed pre-intervention 

characteristics. As shown by Rosenbaum and Rubin (1983), the propensity score is a balancing 

score, in the sense that treated and control units with similar propensity scores will have a similar 

distribution of observed pre-intervention characteristics. Propensity-score adjustment can also 

address time-varying selection bias that could arise, for instance, if the evolution of net revenue is 

influenced by initial conditions that differ between treated and control units (Chen, Mu, and 

Ravallion 2009;  Mu and van de Walle 2011). To create a comparison group that more closely 

resembles the pre-intervention trends in net revenue of the treated group, we estimate the 

propensity score P(Y) as a function of the annual changes in net revenue between 2008 to 2010 

using a logit model.22 In turn, we follow Hirano, Imbens, and Ridder (2003) and estimate equation 

(1) with weights of unity for treated units and P(Y)/(1-P(Y)) for control units. 

III.E. The Synthetic Control Method 

The propensity-score-weighted (PSW) DnD estimator improves the comparability of the 

treated and control group by balancing on observed pre-intervention outcomes. However, the PSW 

estimator assumes that each treated vessel has a counterfactual that can be estimated using the 

same comparison units, effectively assuming that changes in the outcome variable over time would 

have been the same for all treatment units in the absence of the intervention. In contrast, the 

synthetic control method (SCM) (Abadie and Gardeazabal 2003;  Abadie, Diamond, and 

Hainmueller 2010) relaxes this assumption by constructing a comparison unit for each vessel, 

thereby allowing for vessel-specific treatment effects. The SCM creates a synthetic control unit 

                                                 

22 As pointed out by Abadie, Diamond, and Hainmueller (2014), matching on pre-intervention outcomes helps 

control for unobserved factors that influence year-to-year changes in net revenue, as well as any heterogeneous 

effects of observed and unobserved factors on net revenue.  
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from a weighted average of control units, where the assigned weights are calculated to best match 

the synthetic control unit to the treated unit based on pre-intervention characteristics. Specifically, 

let the effect of the intervention for vessel i in year t be 

 ,I N

it it itY Ya = -   (2) 

where 
N

itY  is the potential net revenue for vessel i in year t that would be observed without the 

intervention and I

itY  is the potential net revenue for vessel i in year t that would be observed if 

exposed to the intervention. Let T0 denote the period in which the intervention occurs so that vessel 

i is exposed to the intervention in periods T0  to T. Then the “treatment effects” we want to estimate 

are 
0, ,( ,..., )i T i Ta a . 

From equation (2), we know that 
I N N

it it it it itY Y Y Ya = - = - for 0{ ,..., }t T TÍ , where itY  is the 

observed net revenue.  Since we don’t observe the potential net revenue 
N

itY  post-intervention, we 

need to estimate the unobserved counterfactual 
N

itY of what vessel i would have experienced in the 

absence of the intervention in the periods T0  to T in order to obtain an estimate of the parameters 

of interest .ita  For the SCM approach, the estimate is a weighted average of the observed net 

revenue for the J units in the control group:  

 
*

0
ˆˆ , { ,..., }N

it it it it ij jtj i
Y Y Y w Y t T Ta

" ¸
= - = - Íä   (3) 

where the * *

ijw ÍW are the time-invariant weights designated to each vessel in the control group. 

Intuitively, we want to choose a weighting vector 
*

W so that the synthetic control unit resembles 

the net revenue for vessel i before the intervention, using potential predictors for net revenue of 

the donor-pool comparison units. The SCM therefore chooses the weighting matrix to minimize 
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the distance between the pre-intervention characteristics of vessel i and its synthetic control unit.23 

Following the PSW model above, we use the annual changes in net revenue between 2008 and 

2010 as the pre-intervention characteristics to determine the weighting matrix. In order to compare 

the estimated SCM treatment effects to those derived from the DnD and PSW models above, we 

follow Bohn, Lofstrom, and Raphael (2014) and construct a DnD estimate from our SCM 

treatment effects by calculating the difference between the pre-intervention averages for treated 

vessel i and its synthetic control and subtracting this from the comparable post-intervention 

difference between treated vessel i and its synthetic control, 

 
0

0

1

1
0 0

1 1ˆ ˆ .̂
( 1) 1

T TSCM

i it itt T tT T T
d a a

-

= =
= -
- + -

ä ä   (4) 

We then use the average of ̂SCM

id across vessels as our SCM estimate of the average treatment 

effect on the treated vessels.24  

As discussed in Abadie, Diamond, and Hainmueller (2010), the SCM is a generalization of the 

traditional DnD model that has a number of advantages. First, SCM provides a systematic, 

transparent, and data-driven process for choosing comparison units, conditional on the choice of 

the donor pool and predictor variables. Second, SCM allows the effects of unobserved vessel-

specific factors to vary with time, thereby relaxing the “common trends” assumption in the 

traditional DnD model (Abadie, Diamond, and Hainmueller 2010). Third, the weights associated 

with each vessel’s synthetic control make explicit the contribution of each control unit to the 

                                                 

23 Additional details regarding the analytical and empirical implementation of constructing the synthetic control unit, 

as well as the procedure for obtaining the optimal weighting matrix   W
*
 can be found in Abadie, Diamond, and 

Hainmueller (2010). 
24 In order to be consistent with the year-specific treatment effects in the DnD and PSW approaches, we also 

augment equation (4) to derive year-specific treatment effects for each vessel: 
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vessel’s counterfactual of interest. Fourth, the similarities (or lack thereof) between a treated vessel 

and its synthetic control, in terms of pre-intervention outcomes and other predictors, is easily seen, 

making it explicit whether a vessel’s comparison unit is sufficiently similar for causal inference. 

Lastly, unlike the DnD estimator, the SCM safeguards against extrapolating outside of the support 

of comparison units by restricting the weights for the synthetic control to be positive and sum to 

one (King and Zeng 2006;  Abadie, Diamond, and Hainmueller 2014). 

Although the SCM has several attractive features relative to the DnD estimator, it is subject to 

many of the same assumptions necessary for unbiasedness as the DnD estimator. For example, the 

donor pool must be constructed of control units that are as similar as possible to the treated units, 

in the sense that the outcomes of interest are thought to be driven by the same structural process 

and not subject to structural shocks during the sample period. Further, similar to the DnD estimator, 

the outcomes of the control units cannot be affected, or contaminated, by the intervention. 

III.F.  Mechanisms: A Structural Equation Model Approach 

The empirical methods above are useful for establishing the existence of a causal effect of the 

closure on net revenue, but they do not explain the source of the effect (Heckman and Smith 1995;  

Imai et al. 2011). To this end, we estimate the causal mechanisms depicted in Figure IIb using a 

structural equation modeling (SEM) approach, which estimates the direct effects associated with 

each edge using the following system of equations (Sobel 1987): 
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  (5) 

where the parameters mf  and 
mq  denote individual and time fixed effects, respectively, for 
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equation m. We make several assumptions regarding the SEM in (5) for identification purposes. 

First, we assume that the SEM is linear in parameters so that the direct effect corresponding to 

edge n in Figure IIb is easily identified as the regression coefficient 
nd .25 The assumption of 

linearity in (5) also facilitates the identification of indirect effects, which are generally not well 

defined in non-linear models (Pearl 2001). Second, we assume that the SEM is recursive, in the 

sense that causality flows in only one direction—i.e., there are no feedback loops or simultaneous 

relationships.26 Recursive models have the benefit of being identified as long as error terms are 

not correlated across equations that are directly linked (Brito and Pearl 2002). Thus, we estimate 

the equations in (5) as a system, allowing for correlation between error terms while ensuring that 

the system is identified. Finally, we assume that the causal effect of the closure on the intermediate 

variables revenue, quota, harvest, price, and cost can be identified using the same DnD approach 

we use for net revenue, as presented in Section III.D , which is generally supported by evidence of 

pre-intervention common trends for these variables (Figure III  and Figure A-IV).   

The estimated direct effects in the SEM in (5) can be used to compute a variety of 

decompositions of the overall effect of the closure. Assuming that the mechanisms depicted in 

Figure II  are exhaustive (Pearl 2000), then we can define quota, displacement, and value 

mechanisms that are mutually exclusive and exhaust all possible paths of causation between 

closure and net revenue.  This makes it possible to describe the impacts of closure on net revenue 

in terms of quota changes, displacement of vessels from closed areas, and changes in product 

                                                 

25 Note that the last equation in (5) holds by definition, and thus, the direct effects associated with edges l and m in 

Figure IIb are equal to 1 and -1, respectively.  
26 The recursive nature of the system of equations in (5) may be called into question, particularly with respect to the 

relationships 
 
harvest price and  harvestcost . Specifically, one might expect both price and cost to also 

influence harvest. We explore the potential simultaneity between harvest, price, and cost in Appendix B.2. and 

conclude that there is little evidence to suggest that the recursive relationship between these variables does not exist.       
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value. 

The effect on net revenue due to the reduction in quota—i.e., the “quota mechanism”—is equal 

to:27 

 
quota d g j h i k

closure quota harvest revenue harvest price harvest cost
net  revenue net  revenuerevenue net  revenueharvest

d d d d d d d
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æ ö
ç ÷

= ³ + -   (6) 

where 
d gd dis the indirect effect of closure on harvest due to the reduction in quota, and the 

bracketed term is the overall effect of harvest on net revenue, which is comprised of three 

components: the indirect effect of harvest on net revenue via a change in revenue jd , the indirect 

effect of harvest on revenue through price 
h id d, and the indirect effect of harvest on net revenue 

through cost adjustments .
kd  Similarly, the effect of closure on net revenue from the displacement 

of vessels from historically productive fishing grounds—i.e., the “displacement mechanism”—is 

equal to: 
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closure harvest harvest revenue harvest price harvest cost closure cost
net  revenue net  revenue net  revenuerevenue net  revenue

d d d d d d d
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= ³ + - -   (7) 

where 
fd  is the effect of cost on net revenue induced by closure, 

ed is the direct effect of closure 

on harvest, and the bracketed term is the overall effect of harvest on net revenue (as described 

above). Lastly, the potentially offsetting effect of closure on net revenue from shifting production 

to more valuable species and/or to other revenue-generating activities—i.e., the “value 

mechanism”—is equal to: 

                                                 

27 The linear system of equations implies that an indirect effect, say of x on y through an intermediate variable z for 

instance, is the product of the direct effects of x on z and z and y, which is equal to the product of the regression 

coefficients associated with each direct effect. The total effect of x on y is thus the sum of all indirect effects and the 

direct effect of x on y. 
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 value b c i

closure revenue closure price
net  revenue revenue net  revenue

d d d d
   



= +   (8) 

where 
bd is the impact on net revenue from a direct effect of closure on revenue and . c id d.is the 

impact on net revenue from a direct effect of closure on price and its subsequent effect on revenue. 

Thus, the total effect of closure on net revenue is the sum of the quota, displacement, and value 

mechanisms, 
quota displacement valued d d+ + .  

III.G. Inference 

The use of statistical inference in comparative case studies is difficult for several reasons. First, 

as pointed out by Bertrand, Duflo, and Mullainathan (2004), DnD models estimated with long 

panel datasets typically suffer from severe serial correlation, resulting in standard errors that are 

too small if serial correlation is neglected. Second, comparative case studies often rely on a 

relatively small number of treated and control units, making estimators that rely on cross-section 

asymptotics infeasible as inferential techniques. Finally, as argued by Abadie, Diamond, and 

Hainmueller (2010), statistical inference techniques based on uncertainty arising from sampling 

error are irrelevant for case studies such as this one that have the entire population of aggregate 

data.         

For all the models above, we use permutation-based inferential techniques, which are based 

upon uncertainty regarding whether the control group is able to reproduce the counterfactual 

outcome that the treated unit would have exhibited in the absence of the intervention (Abadie, 

Diamond, and Hainmueller 2010).28 For example, we would lose confidence that a sizable estimate 

of the treatment effect reflects the true effect of the intervention if we obtained similar or larger 

                                                 

28 Estimation of all models was conducted in Stata SE 14.0 (StataCorp LP, College Station, Texas). Permutation-

based p-values were computed using Stata’s permute command using 5,000 permutations. 
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estimates when the intervention is artificially reassigned to units not directly exposed to the 

intervention (Abadie, Diamond, and Hainmueller 2014). Such permutation tests are based on the 

fact that under the null hypothesis of no effect, units in the control and treatment group are 

statistically the same. Permutation tests determine the significance of the estimated treatment effect 

by rearranging the order of the treatment assignment and estimating the effects of these “placebo” 

interventions. If the original estimated effect is large relative to the reference distribution of the 

placebo effects, then we have confidence that the null hypothesis of no effect is false (Bertrand, 

Duflo, and Mullainathan 2004). As in classical statistical inference, we can perform significance 

tests of the estimated treatment effect through the use of p-values. Specifically, a p-value can be 

constructed by calculating the fraction of placebo effects in the reference distribution greater than 

or equal to the effect estimated for the treated unit. In this sense, the permutation-based inferential 

techniques (and associated p-values) are restricted to the question of whether or not the estimated 

effect of the actual intervention is large relative to the distribution of placebo effects (Abadie, 

Diamond, and Hainmueller 2014).29 Notice that since we are not making inference on a larger 

population from our sample, the reference distribution under permutation inference is not a 

sampling distribution, nor do the significance tests make distributional assumptions about the error 

term or rely on large-sample asymptotics—i.e., they are exact and valid for any sample size 

(Bertrand, Duflo, and Mullainathan 2004).30 Thus, the reference distribution does not provide 

                                                 

29 Note that permutation inference is not limited to a binary treatment variable. Indeed, we use permutation inference 

to test the significance of continuous variables, such as those in the system of equations (5), as well as the nonlinear 

equations for the mechanism effects in equations (6) to (8). See Appendix B.3. for more details.  
30 As a robustness check, we also use classical inference techniques that are based on uncertainty arising from 

sampling error, thereby viewing our data as a single realization of a data-generating process. In particular, we 

specify a flexible error structure for the DnD and PSW models that allows for a common AR(1) correlation within 

vessels, as well as vessel-specific heteroskedasticity (cf., Abbott and Wilen 2010). Our results are robust to the 

chosen inferential techniques. Results using the above classical inference technique are available from the authors 

upon request. 
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information about statistical precision and is not influenced by nonindependence across 

individuals.31 

IV.  RESULTS 

IV.A. Total Effects of the Closure 

The estimated propensity scores (Figure A-VI) provide evidence that blindly applying the DnD 

model to our sample without exploring whether the control group is sufficiently similar to the 

treated group would lead to potentially misleading results. There is one treated vessel that differs 

significantly from all other vessels in regards to pre-intervention annual trends in net revenue, and 

thus does not have a good comparison unit within the control group.32 Given the lack of suitable 

comparison units, we remove the off-support vessel from our sample for all estimates presented 

hereafter, and note that our estimates represent average treatment effects for only six of the seven 

vessels in the treatment group.33 

The estimated average treatment effect of the closure on net revenue for the DnD, PSW, and 

SCM, models are presented in Figure IV , where a unique treatment effect is estimated for each 

post-intervention year. In general, the estimated average treatment effects for all models provide 

little evidence of a negative effect on net revenue. Estimated treatment effects for the PSW and 

SCM models are not meaningfully different from those obtained from the DnD model using the 

                                                 

31 By implication, a confidence interval generated from the permutation-based reference distribution does not 

provide the same information as a confidence interval generated from the classical-based sampling distribution. 

Because of this, permutation-based inference methods do not produce confidence intervals for tests of statistical 

significance. 
32 Propensity score estimation results and the balancing of pre-intervention trends in net revenue are presented in 

Table A-II  and Table A-III . Note that balance is significantly improved with the trimmed sample after dropping the 

off-support treated vessel (Table A-II ). The SCM results for the off-support vessel also confirm this result (Figure 

A-VII ). 
33 Dropping the off-support vessel from our sample has a notable effect on the estimated treatment effects; indeed, 

DnD estimates for net revenue that include the off-support vessel are considerably larger (more positive) than those 

obtained using the trimmed sample, suggesting that the SSL measures had a positive (but insignificant) effect on net 

revenue in most years when this vessel is included (Figure A-VIII ). However, such an interpretation is tenuous due 

to the lack of a good counterfactual for the off-support vessel.  
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trimmed sample, even though the PSW and SCM approaches give greater care to balancing 

treatment and control units based on pre-intervention outcomes.  Indeed, the range in the average 

effect across models is −$2.15 million to −$1.25 million in 2011, −$1.75 million to −$1.35 million 

in 2012, −$0.16 million to $0.14 million in 2013, and +$0.15 million to +$0.18 million in 2014. 

Using the results of the DnD model, these estimated effects amount to an average annual change 

in net revenue of −29.3%, −28.8%, −3.5%, and +3.6% for the years 2011-2014, respectively. 

While all three models suggest that there was an economically meaningful negative effect of the 

closure for the first two years, none of the estimated average treatment effects are significant at the 

10% level for any year.34 Thus, the estimated treatment effects are not large relative to those 

generated by randomly assigning units to the treatment group, thereby decreasing our confidence 

that the sizeable negative effects reflect any actual effect of the closure. 

The SCM results from equation (4) for each treated vessel display a large degree of 

heterogeneity across vessels (Table II ).35 For example, the insignificant negative average effect on 

net revenue in 2011 (Figure IV) is driven by a large and significant effect for a single vessel (Vessel 

3), while four of the remaining five vessels were actually better off with the closure, although 

insignificantly so. In contrast, the negative average effect in 2012 is comprised of smaller, yet 

significant, effects for three different vessels (Vessels 1, 4, and 6). Only one vessel had a significant 

average negative effect over all post-intervention years (Vessel 4), while only one vessel did not 

have a single significant negative effect in any given post-intervention year (Vessel 2). It is 

                                                 

34 In fact, only the estimated average effects for the year 2011 for the DnD and PSW models came “close” to being 

significant at the 10% level with p-values equal to 0.127 and 0.120, respectively. 
35 SCM results were obtained using the Stata user-written command synth_runner (Quistorff and Galiani 2016). For 

most treated vessels in the trimmed sample, the difference in the trend in net revenue for pre-intervention years is 

close to zero, as indicated by the root mean square prediction error in Table II  and by the SCM plots in Figure A-IX. 

Also note that the synthetic controls are largely based on four vessels from the donor pool (Table II ).   
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interesting to note that the annual treatment effects for Vessels 2 and 3 move in opposite direction 

than the rest of the treated vessels, suggesting that there are likely structural differences in the 

responses and outcomes of vessels to the closure. Overall, the results from the SCM demonstrate 

that the treatment effects of the closure are heterogeneous across vessels and that the insignificant 

average treatment effects in Figure IV  hide the existence of significant treatment effects at the 

individual vessel level.  

IV.B. Intermediary Effects of the Closure 

While Figure IV provides little support for the existence of a treatment effect on net revenue 

at the aggregate level, the total effects may be disguising important effects on the intermediate 

variables that comprise net revenue. Indeed, estimates of the SEM parameters in the system of 

equations (5) (Table III  and Figure A-X) reveal the existence of adverse direct effects of closure 

on the intermediate variables quota and cost. The reduced Atka mackerel TACs in areas 542 and 

543 clearly had a significant and prolonged negative direct effect on the total quota allocated to 

the treated vessels, which became more negative over time in response to declining Atka mackerel 

allowable biological catches (Figure A-I).36 Further, treated vessels experienced a relatively large 

and significant direct effect on cost (conditional on harvest) in the first two years after the closure, 

suggesting that the closure itself increased the average cost of production as vessels were forced 

to fish their Atka mackerel quota in less productive areas and/or target higher-cost species.37  

The adverse effects on quota and cost, however, are offset by positive direct effects on the 

intermediate variables price and revenue. The direct effect on harvest (conditional on quota) is 

                                                 

36 The average treatment effects for quota imply an average change in quota of −10.8%, −11.0%, −15.4%, and 

−13.4% for the years 2011-2014, respectively, relative to what quota would have been in the absence of the closure. 
37 The average treatment effects for cost imply an average change in cost of +35.3%, +25.7%, +7.9%, and 0% for 

the years 2011-2014, respectively, relative to what cost would have been in the absence of the closure. 
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relatively small and insignificant in most years, apart from a large and significant increase in 2014, 

suggesting that harvest was not adversely affected by the closure itself.  Rather, treated vessels 

were able to shift their harvest towards species whose annual quotas had not been exhausted in 

years prior to the closure (e.g., rock sole and Pacific cod) and species that have no quota associated 

with A80 (e.g., pollock).38 Some of these species had higher average wholesale prices and recovery 

rates relative to Atka mackerel, resulting in positive and significant direct effects on price 

(conditional on harvest) and revenue (conditional on harvest and price), respectively, in multiple 

years after the implementation of the closure.39  

The direct effects in Table III  suggest that the closure impacted vessels negatively through a 

reduction in quota and an increase in cost, but that these negative impacts were offset through an 

increase in price and revenue. However, as depicted in Figure IIb, these estimates do not account 

for the existence of several indirect effects of the closure as the direct effects permeate through 

several different paths before reaching net revenue. As an example, consider the total annual effect 

of a one-unit reduction in quota, where a unit is defined as 1,000 mt. The extent to which this 

affects net revenue depends on how reduced quota affects harvest, and in turn, how harvest affects 

price, revenue, and cost. From Table III , we see that a one-unit reduction in quota does not simply 

reduce harvest by a corresponding unit; rather, harvest declines by approximately 1.44 units on 

average, which is indicative of reductions in quota that do not match the composition of species 

comprising vessels’ harvest.40 In turn, the reduction in harvest has the effect of reducing revenue 

                                                 

38 See Figure A-XI , Figure A-XII , and Figure A-XIII . 
39 See Figure A-XIV  and Figure A-XV. The recovery rate for a species is the proportion of the harvested weight of 

the fish that is left over after processing. Thus, a higher recovery rate results in increased revenue, conditional on 

harvest weight and unit wholesale prices. Note that the positive and significant treatment effects on revenue are not 

driven by changes in income from other sources, such as quota leases and/or tendering.  
40 This phenomenon is known as the “catch-quota balancing” problem, and is a well-known problem within 

multispecies quota systems generally (Copes 1986;  Sanchirico et al. 2006), and for the A80 fisheries particularly 

(Abbott, Haynie, and Reimer 2015). 
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by $1.14 million on average (1.44 units × $0.789 million/unit), all else equal. This negative impact 

on revenue, however, is offset by the fact that a one-unit reduction in harvest results in a $0.019 

per unit increase in price, on average. In turn, the increase in price has the effect of increasing 

revenue by $0.17 million (1.44 units × $0.019/unit × 6.270 million). Together, the total effect of a 

one-unit reduction in quota is thus a $0.97 million reduction in revenue. When combined with the 

$0.694 million reduction in cost associated with the reduction in harvest (1.44 units × $0.482 

million/unit), the total effect of a one-unit reduction in quota on net revenue—i.e., the “quota 

mechanism”—is equal to −$0.276 million ($0.694 million − $0.97 million). 

The estimated effects of the quota, displacement, and value mechanisms in equations (6) 

through (8) and the estimated total effects are displayed in Figure V and account for both the direct 

and indirect effects of closure on net revenue.41 The displacement mechanism clearly had a large 

and negative impact on net revenue in the first two years following the onset of the closure, 

indicating that the closed areas in isolation would have cost a vessel $5.2 and $3.9 million in net 

revenue on average in 2011 and 2012, respectively, if the vessel had the same amount of quota to 

harvest but had not been able to increase the value of its harvest by shifting to other species with 

higher wholesale prices and/or recovery rates. The negative effects of the displacement mechanism 

are the main driver of the negative total effects of closure in 2011 and 2012; however, these effects 

disappear by 2013, perhaps indicating that vessels were able to adjust their harvesting operations 

to the new regulations after two costly adjustment years. In contrast, the quota reduction had a 

negative impact on net revenue over the entire post-intervention period, indicating that a vessel 

                                                 

41 Note that, because net revenue is defined as revenue minus cost and we use the DnD estimator for each equation 

in (5), the total effect of closure on net revenue from the SEM (i.e.,  d
quota +ddisplacement +d value

)  is necessarily equal to 

the DnD estimator for net revenue (i.e.,   d
DnD

from equation (1)). 
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would have lost between $0.73 and $1.01 million in net revenue on an annual basis had quota 

simply been reduced, all else equal. The sustained impact of quota on net revenue likely reflects 

the relative difficulty of adjusting harvesting practices to lower overall quotas, compared to 

harvesting the same quota in different areas. However, the negative effects associated with both 

mechanisms can be offset if opportunities exist to increase the wholesale value of harvest. Indeed, 

Figure V shows that the value mechanism is nearly large enough to offset the negative effects of 

the closure and quota mechanisms in 2011 and 2012, making the total effect of the closure on 

average net revenue negligible and not statistically different from zero.  

IV.C. Investigating Potential Spillover Effects 

As previously discussed, one potential concern regarding our identification strategy is that the 

treatment may contaminate the control group through spillover effects as treated vessels shift their 

fishing effort to areas historically fished by control units. To address this concern, we compare the 

average pre- and post-intervention levels of “congestion” for control vessels in each month, where 

congestion is measured as the number of other vessels (both treated and control) that conducted a 

haul in the same area and day as a control vessel.42 As shown in Figure A-XVI , congestion levels 

followed the same general annual pattern pre- and post-intervention, with some minor differences 

in certain months of the year. While many of these monthly changes in average congestion are 

statistically different from zero, most of them are both relatively small (typically less than one 

vessel) and negative, thereby suggesting that the congestion levels for control vessels were 

relatively unaffected by the closure. However, it could be the case that congestion levels remained 

relatively stable because the shifting effort of treated vessels induced the control vessels to move 

                                                 

42 For this analysis, we use the Alaska Department of Fish and Game statistical reporting areas (often referred to as a 

Stat6 areas), which are spatially more refined than the NMFS management areas. Stat6 areas are typically 1° 

longitude by 1/2° latitude (approximately 60 km × 60 km, but smaller poleward and often in areas near land).  
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from their historical fishing areas. However, there are at least two reasons why such an effect is 

likely negligible. First, a large portion of the fishing effort of the treated vessels shifted towards 

management area 541 where the control vessels had very little presence (Table I and Figure 

A-XVII ). Second, the average proportion of monthly fishing effort allocated to the NMFS 

management areas by the control group underwent only minor post-intervention changes (Figure 

A-XVIII ). Further, for those months and areas that experienced less fishing effort post-intervention 

(e.g., months 8 to 11 in area 509), relatively few of these months correspond to an increase in 

fishing effort in the same area by the treated vessels. Thus, in general, there is little evidence to 

suggest that the closure contaminated the control group through congestion externalities.  

Another potential source of contamination stems from the transferability of quota across 

vessels. Prior to the closure, there were virtually no monetary quota transactions, primarily for two 

reasons: 1) seven vessels (four treated and three control) remained in the limited-access sector after 

A80 was implemented, and quota cannot be exchanged between a cooperative and a limited-access 

sector; 2) companies primarily fish their own target and PSC allocations. As noted earlier, all 

vessels in the limited-access sector formed a second cooperative in 2011, thereby creating an 

avenue through which additional quota exchanges could take place. Indeed, Figure A-XX shows 

that quota generally flowed from the treated to the control group after the closure. If the increased 

flow of quota was in response to the closure, it is possible that the control vessels were better off 

than they would have been without the closure, thereby biasing our estimator of the treatment 

effect downwards. There are at least three reasons, however, why the potential contamination is 

minimal. First, only one vessel in the treated group is part of a company that has vessels in the 

control group. Thus, within-company transfer opportunities largely remained unchanged with the 

closure and most exchanges were contained within the treated and control groups. Second, the 



34 

average amount of quota leased (1.18 thousand mt) and royalties paid ($0.11 million) by the 

control group represented only 6.88% and 0.96% of harvests and variable costs, respectively, in 

the year with the largest exchange of quota (2013). Third, nearly all leased quota after the closure 

was for yellowfin sole, which allowed the treated group to harvest at most 5.5% above their annual 

yellowfin sole allocation (Figure A-XI), which was worth roughly $0.49 million per vessel in 

wholesale revenue, or 2.7% of average total revenue. Altogether, this suggests that while the 

treatment may have caused some positive spillover to the control group through quota exchanges, 

the amount of quota exchanges after the closure appears to be small, and any contamination is 

likely minimal and inconsequential for our results. 

IV.D. Investigating Potential Confounding Factors 

While the possibility of contamination via congestion is likely small and inconsequential for our 

results, there may be other challenges for our identification strategy, such as changes in exogenous 

factors at the time of intervention that disproportionately affected the treated vessels. The price of 

Pacific ocean perch increased sharply in 2011 (Figure A-XIV ) for reasons unlikely related to the 

closure.43 Given the lack of quota allocated to control vessels for Pacific ocean perch, the increase 

in price disproportionately benefited treated vessels, thereby violating our assumption that the time 

varying factor in equation (1) influences the outcome variable equally across all vessels. Indeed, 

the increased price for Pacific ocean perch likely explains some of the positive price and value 

effects in 2011, and thus, the overall effect of the closure would likely have been more negative in 

the absence of this exogenous shock.  

The inclusion of annual fixed effects prevents us from separately controlling for the price of 

                                                 

43 Pacific ocean perch competes in the global market for rockfish, of which it makes up a significant portion 

(approximately 20% in 2013). The increase in the wholesale price of Pacific ocean perch is likely due to the 

decrease in supply from other areas, such as Europe, starting in 2011 (Alaska Fisheries Science Center 2015).  



35 

Pacific ocean perch in estimating the overall effect of the closure in equation (1). However, we 

can use the treatment effect decomposition in Section III.F to obtain an estimate of the overall 

effect of the closure without the influence of the increased price if we are willing to assume that 

the positive treatment effect on price in 2011 is driven entirely by the increased price of Pacific 

ocean perch. Specifically, we re-estimate the system of equations in (5) while constraining the 

2011 treatment effect on price to be zero and obtain new estimates for the quota, displacement, 

and value mechanisms in equations (6) through (8). In turn, we obtain a new estimate of the overall 

effect of the closure by summing together the new estimates for the three exhaustive mechanisms.  

The resulting estimates of the overall treatment effect and mechanisms are not considerably 

different from the original estimates, although the overall effect becomes slightly more negative 

(−$2.49 million) and significant (p-value = 0.054) in 2011 (Figure A-XIX ). Thus, the exogenous 

price shock does not affect our results in a meaningful way. While it is unlikely the increased price 

of Pacific ocean perch fully explains the positive treatment effect on price in 2011, this exercise 

provides a conservative estimate of the influence of the price shock on our estimate of the overall 

effect. More generally, this exercise demonstrates how mediation analysis can be used to explore 

the sensitivity of results to potentially confounding factors, provided one is able to isolate the path 

through which the confounding factor operates.              

V. CONCLUSION 

Marine reserves are a primary tool utilized to protect the marine environment.  While many 

long-term benefits have been identified, there has been limited attention given to ex post 

evaluations of the potential short-run costs of these closures on the fishing industry. This is 

partially due to the challenges in separating the impacts of the closures from the dynamically 

evolving changes that are ubiquitous to the commercial fishing industry, as well as a general lack 
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of extensive fishing revenue and cost data.  We utilize a unique panel dataset of annual net revenue 

and multiple program evaluation tools to examine the short-run impact of a large spatial marine 

closure. We decompose the overall treatment effect of the closure through a mediation analysis, 

demonstrating how the impact of the closure is the result of multiple counteracting mechanisms 

that are important for understanding the potential impacts of marine reserves in other settings. 

More generally, the economic impact of marine reserves will depend on the biological, economic, 

and institutional setting of the fishery. Therefore, identifying these mechanisms is critical for 

understanding how fishery policy makers can design policies that achieve the desired objective of 

a marine reserve while enabling the mechanisms that minimize the potential cost to the fishing 

industry.  

Our analysis indicates that there are no statistically significant negative impacts on average net 

revenue, although there is considerable vessel heterogeneity that indicates that some vessels did 

relatively poorly in some years. While displacing vessels from productive fishing grounds was 

particularly costly in the first two years after the closure, vessels were able to offset this cost by 

shifting their fishing operations to target other valuable species outside of the closure. We note, 

however, that there are several sources of bias that may push our estimates slightly towards zero, 

thereby deflating the estimated impact of the closure. For example, positive spillover effects from 

the exchange of quota between treated and control vessels may have made the control vessels 

better off after the closure than they would have been otherwise. In addition, a positive and 

exogenous shock to prices for Pacific ocean perch likely improved treatment vessel outcomes after 

the closure compared to what they would have been. Further, other regulatory changes that were 

relaxed with the closure, such as temporal restrictions for targeting Atka mackerel in area 542 (see 

Hicks and Schnier 2010), likely provided additional flexibility for the treated vessels to respond to 
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the closure. Thus, while the influence of many of these confounding factors is likely to be small 

(as we demonstrate in our analysis), they must be considered when interpreting our results.      

Several features of the BSAI groundfish fisheries contributed to reducing the cost of the 

closure. The annual harvest allocations of the six A80 target species are generally not in balance 

with the rate at which they are encountered by fishing gear. The resulting slack in quota constraints 

(Figure A-XI) gave vessels the flexibility to substitute towards species whose quotas had not been 

exhausted in years prior (e.g., rock sole). If fishing gear had been perfectly selective so that all 

quotas had been exhausted prior to the closure, the relative economic impact would have likely 

been much more substantial.44 Similarly, not all species encountered by gear are managed by 

allocated harvest quotas. Instead, vessels are allowed to retain a certain percentage of catch of 

“non-allocated” species on a trip-by-trip basis, providing another avenue through which vessels 

could substitute towards harvesting other species outside of the closure (e.g., pollock; Figure 

A-XII ). Thus, the economic impact of the closure would have likely been more severe had 

regulations required the catch of all non-allocated species to be discarded. Finally, groundfish 

fisheries in the BSAI are managed such that the sum of TACs for all managed species cannot 

exceed an overall ecosystem cap of two million mt. Thus, the reduction in TAC for Atka mackerel 

created room for TACs of other groundfish species to be increased closer to their biological limits. 

Without this management feature, the quota mechanism could have been much more severe.    

Our work in this paper demonstrates how modern program evaluation methods can accurately 

capture the trade-offs of alternative valuable uses of marine resources. In particular, our analysis 

reveals the value of collecting information on net revenue and designing marine reserves in a way 

                                                 

44 This thought exercise changes the baseline of our analysis from a world in which a catch-quota balancing problem 

exists to a world in which resources are more perfectly utilized, underscoring the important role of initial conditions 

in program evaluations.   
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that can be evaluated retrospectively, both of which are essential components of evidence-based 

policy making. Neglecting to collect information on costs and utilizing “revenue at risk” or gross 

revenue alone provides a misleading view of how industry is able (or not able) to adapt to marine 

reserves. Similarly, not having an adequate comparison group hinders estimation of the 

counterfactual of what net revenue would have been without the reserve. In the absence of net 

revenue information and/or an adequate comparison group, policy evaluations will likely be forced 

to rely on welfare estimates generated by more structural econometric models of how fishers 

respond to marine reserves (e.g., Smith and Wilen 2003;  Haynie and Layton 2010). While such 

models have advanced considerably in recent years and have the capability of capturing many 

aspects of the spatiotemporal behavior of fishers, their ability to accurately predict how fishers will 

respond to a marine reserve depends on how well the model represents fishers’ actual decision 

process and whether structural parameters estimated using data prior to the closure will be valid 

after the closure (Valcic 2009;  Reimer, Abbott, and Wilen 2017). Therefore, building a body of 

empirical evidence regarding the short-run economic impacts of marine reserves, as well as the 

mechanisms through which they are realized, remains critical for policy makers’ ability to design 

better policies that achieve the intended goals of a marine reserve. 
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TABLES 

Table I: Descriptive statistics for the control and treated groups. 
                    

Variable Group Area/Species 2008 2009 2010 2011 2012 2013 2014 

Active Vessels Control   15 14 13 13 13 11 11 

Treated   7 7 7 7 7 7 7 

Average Number Days Fished Control   175 171 171 165 156 155 164 

Treated   210 184 205 225 233 239 253 

Average Annual Quota (1,000 mt) Control   13.7 14.6 15.0 13.3 13.0 12.3 11.9 

Treated   22.6 23.8 24.6 20.5 20.0 18.5 18.2 

Allocated Quota Harvested (%) Control   80.3 67.9 77.4 80.4 85.9 88.5 80.7 

Treated   67.7 59.0 52.3 60.5 61.2 59.0 65.6 

Average Fishing Time (%) 

Control 

Aleutian Islands 541 1.2 4.1 5.6 3.4 6.9 1.5 0.2 

Aleutian Islands 542 0.0 0.7 0.0 0.0 0.0 0.0 0.0 

Aleutian Islands 543 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bering Sea 93.7 90.6 88.7 89.5 89.0 91.2 87.2 

Gulf of Alaska 16.6 12.2 12.0 13.1 10.8 11.4 23.4 

Treated 

Aleutian Islands 541 7.3 15.7 20.9 28.5 40.5 28.6 21.6 

Aleutian Islands 542 13.5 13.8 14.3 7.3 7.6 6.6 5.4 

Aleutian Islands 543 12.8 16.6 16.0 6.3 6.4 5.9 4.8 

Bering Sea 61.1 48.4 43.5 55.6 42.9 57.4 65.5 

Gulf of Alaska 5.2 5.6 5.3 4.1 4.4 3.3 4.9 

Average Wholesale Revenue (%) 

Control 

Atka Mackerel 0.6 1.2 0.9 0.6 1.9 1.3 1.0 

Flathead Sole 11.4 8.2 8.7 4.1 2.9 9.5 6.0 

Pacific Cod 14.9 14.8 14.2 13.4 11.7 13.4 12.4 

Pacific ocean Perch 1.2 2.3 4.0 5.4 4.7 4.1 6.3 

Rock Sole 18.8 19.9 22.3 19.5 25.2 16.4 14.1 

Yellowfin Sole 33.6 31.3 31.8 31.0 28.3 29.4 26.0 

Treated 

Atka Mackerel 35.1 51.7 47.9 35.9 35.4 26.9 31.6 

Flathead Sole 1.1 0.7 0.7 0.5 0.2 0.9 0.6 

Pacific Cod 5.8 3.0 4.2 5.3 4.6 7.4 6.6 

Pacific ocean Perch 14.8 14.5 19.2 24.8 20.0 22.1 22.8 

Rock Sole 5.4 1.8 2.3 4.4 10.9 5.8 5.8 

Yellowfin Sole 27.0 18.7 14.2 18.0 16.0 18.5 14.4 
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Table II : SCM results and weights for each treated vessel in the trimmed sample  

                

    Vessel 1 Vessel 2 Vessel 3 Vessel 4 Vessel 5 Vessel 6 

2011-2014 

Treatment Effect -1.32 0.76 -0.43 -1.43 -0.49 -0.97 

p-value 0.17 0.67 0.33 0.00 0.33 0.17 

rank 3 9 5 1 5 3 

2011 

Treatment Effect 0.91 -0.98 -10.52 0.70 1.63 0.73 

p-value 0.50 0.33 0.00 0.50 0.50 0.50 

rank 7 5 1 7 7 7 

2012 

Treatment Effect -4.15 2.26 2.68 -5.68 -0.31 -2.91 

p-value 0.00 0.75 0.92 0.00 0.25 0.00 

rank 1 10 12 1 4 1 

2013 

Treatment Effect -1.19 -0.53 -1.82 1.54 0.27 0.79 

p-value 0.25 0.25 0.25 0.67 0.58 0.58 

rank 4 4 4 9 8 8 

2014 

Treatment Effect -0.85 2.29 7.94 -2.30 -3.54 -2.48 

p-value 0.33 0.83 0.92 0.25 0.00 0.25 

rank 5 11 12 4 1 4 

Weights 

Vessel 7 0 0 0 0 0 0.102 

Vessel 8 0.294 0 0 0.676 0.216 0.03 

Vessel 9 0 0 0 0 0 0.073 

Vessel 10 0.706 0.594 0 0 0.784 0.267 

Vessel 11 0 0 0 0 0 0.047 

Vessel 12 0 0 0 0 0 0.079 

Vessel 13 0 0 0 0 0 0.086 

Vessel 14 0 0 0 0 0 0.161 

Vessel 15 0 0 0.829 0.324 0 0.026 

Vessel 16 0 0.406 0.171 0 0 0.094 

Vessel 17 0 0 0 0 0 0.036 

Pre-intervention Fit 0.179 0.563 2.374 1.193 0.269 0.000 

Notes: The 2011-2014 treatment effect is defined in equation (4). See footnote 24 for the definition 

of the year-specific treatment effects. The permutation-based p-values are generated using the 

distribution of placebo effects from the donor pool. Rank is equal to the rank of a vessel’s treatment 

effect relative to all placebo effects (Abadie, Diamond, and Hainmueller 2010;  Munasib and 

Rickman 2015). Pre-intervention fit is the root mean squared prediction error for the pre-

intervention trends in net revenue.  
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Table III : SEM Estimation Results for the System of Equations in (5)  

      

 Dependent Variable 

 Revenue Quota Harvest Price Cost 

 ($ million) (1,000 mt) (1,000 mt) ($/100mt) ($ million) 

Treat × Year=2011 2.747 -2.677 -0.173 1.799 5.188 

 (0.000) (0.000) (0.892) (0.009) (0.000) 

Treat × Year=2012 2.547 -2.698 0.539 0.519 3.988 

 (0.003) (0.000) (0.691) (0.484) (0.001) 

Treat × Year=2013 1.767 -3.731 1.895 -0.243 1.099 

 (0.053) (0.000) (0.360) (0.804) (0.163) 

Treat × Year=2014 -1.214 -3.197 4.964 2.054 -0.046 

 (0.122) (0.000) (0.000) (0.002) (0.976) 

Quota (1,000 mt)   1.447   

   (0.000)   

Harvest (1,000 mt) 0.789   -0.019 0.482 

 (0.000)   (0.000) (0.000) 

Price ($/100 mt) 6.270     

 (0.000)     

Vessel Effects Yes Yes Yes Yes Yes 

Year Effects Yes Yes Yes Yes Yes 

Observations 119 119 119 119 119 

R2 0.524 0.753 0.273 0.268 0.194 

Notes: p-values in parentheses using permutation inference; R2 refers to the proportion of 

variation explained by the independent variables after removing vessel and year fixed effects.   
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FIGURES 

 
Figure I: National Marine Fisheries Service management areas for the Bering Sea and Aleutian 

Islands and the spatial closures in place for the Pacific cod and Atka mackerel trawl fisheries 

from 2011-2014.  

 

 

Figure II : Causal diagram of: a) the overall treatment effect (SSL measure) on the outcome 

variable (net revenue) and b) the mechanisms through which SSL measure causes net revenue. 

Note: The directed edgex y  signifies that x causes y while the bidirected edgex yª  signifies 

that x and y are mutually dependent (Morgan and Winship 2014). Solid nodes represent observed 

variables while hollow nodes represent unobserved variables. 

 

 



47 

 
Figure III : Average outcome variables for the treated and control vessels, 2008-2014. 

  

 

 

 
Figure IV: Point estimates of the annual average treatment effect of SSL measure on net revenue 

for the DnD, PSW, and SCM models.  

Note: The color and shape of the markers indicate statistical significance of estimates based on 

different critical p-values (p). 2011-2014 denotes the average effect across all post-intervention 

years. 
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Figure V: Point estimates of the direct and indirect displacement, quota, and value mechanism 

effects from the SEM model, along with the total effect of the closure on net revenue.  

Note: The color of the markers indicates statistical significance of estimates based on different 

critical p-values (p). 2011-2014 denotes the average effect across all post-intervention years.
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SUPPLEMENTARY MATERIAL: MECHANISMS MATTER FOR EVALUATING THE 

ECONOMIC IMPACTS OF MARINE RESERVES 

Appendix A. SUPPLEMENTARY TABLES AND FIGURES 

A.1. Tables 

Table A-I: Number of unique A80 vessels with Atka mackerel or Pacific cod production days in 

the Aleutian Islands, by NMFS management area. 

                    

 Atka Cod  

Year 541 542 543 AI  541 542 543 AI  Total 

2008 8 7 7 8 10 7 7 10 10 

2009 9 9 7 10 10 9 7 10 10 

2010 8 7 7 8 10 7 7 10 10 

2011 11 7 0 11 13 7 1 13 13 

2012 7 7 0 7 10 7 0 10 10 

2013 7 7 0 7 11 7 0 11 11 

2014 7 7 1 7 8 7 3 8 8 

 

 

 

Table A-II : Propensity score logit estimation results—the probability of being in the treatment 

group given pre-intervention trends in net revenue. 

    

Pre-intervention Trends Treatment 

net revenue2009 - net revenue2008 0.063 

 (0.780) 

net revenue2010 - net revenue2009 0.252 

  (0.610) 

Observations 18 

Pseudo R2 0.04 

Note: p-values in parentheses using permutation inference. 
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Table A-III : Balancing of pre-intervention trends in net revenue, with and without matching. 

              

   Mean   

Sample Pre-intervention Trends Sample Treated Control Bias (%)a 

Bias 

Reduction 

(%) 

Trimmed 

Sampleb 

net revenue2009 - net revenue2008 Unmatched 1.27 -0.29 34.90 
91.40 

 Matched -0.88 -1.01 3.00 

net revenue2010 - net revenue2009 Unmatched 2.33 1.66 40.90 
78.40 

  Matched 1.71 1.85 -8.90 

Full Sampleb 

net revenue2009 - net revenue2008 Unmatched 1.27 -0.29 34.90 
-48.90 

 Matched 1.27 -1.05 52.00 

net revenue2010 - net revenue2009 Unmatched 2.33 1.66 40.90 
66.80 

  Matched 2.33 2.11 13.60 

a The standard percentage bias in the means of the treated and control groups (Rosenbaum and Rubin 1985). 

b The full sample includes off-support units; the trimmed excludes off-support units using a caliper of 0.1. 

Table generated using the Stata user-written commands psmatch2 and pstest (Leuven and Sianesi 2014). 
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A.2. Figures 

 
Figure A-I: Allowable biological catch (ABC) and total allowable catch (TAC) for Atka 

mackerel, by NMFS management area (541, 542, 543) and the entire Aleutian Islands (Total). 

 

 

Figure A-II : Wholesale value of production, by product (2008-2014). 
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Figure A-III : Average quota allocations (2008-2010), by species. 

 

 

Figure A-IV: Average harvest, wholesale revenue, wholesale price, and harvest allocation, 1992-
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2014. Dashed vertical lines indicate first and last pre-intervention years in the data. 

 

 
Figure A-V: Amendment 80 quota allocations and wholesale prices, by target species. 

 

 

Figure A-VI: Estimated propensity scores for treated and control group units 
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Figure A-VII: Synthetic control estimates (black) for the “outlier” vessel and the placebo effects 

(grey) for each vessel in the donor pool. Outcome variable is the year-to-year change in net 

revenues. 

 

 

Figure A-VIII : Difference-in-differences estimates for year-specific treatment effects when the 

“outlier” vessel is included in the sample. The numbers above the markers indicate the 

insignificant p-values. 
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Figure A-IX: Synthetic control estimates (black) for each treated vessel and the placebo effects 

(grey) for each vessel in the control group. Each plotted line is the difference between the treated 

and synthetic control unit’s year-to-year change in net revenues.  

  
Figure A-X: Point estimates of the average treatment effect of SSL measures on the intermediate 

variables quota ( dd ), harvest ( ed ), price ( cd ), revenue ( bd ), and cost ( fd ) for the SEM model in 

equation (5).  

Note: The color and shape of the markers indicate statistical significance of estimates based on 

different critical p-values (p). 
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Figure A-XI: Percentage of quota harvested by vessels in the treated and control group, by 

species. 

Note: The control group effectively has no quota allocations for Pacific ocean perch. 

 

  

Figure A-XII : Average harvest of vessels in the treated and control groups, relative to 2010.  

Note: The species “Other” is an aggregate of all other species that are harvested but not included 

in the figure.  
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Figure A-XIII : Average annual harvest for the vessels in the treated group, by species, 2008-

2014. 

 

 

Figure A-XIV : Average wholesale prices by species, 2008-2014 (Table 26 in  Fissel et al. 

2015a). 
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Figure A-XV: Average recovery rate (product weight / catch weight) for the vessels in the 

treated and control groups, 2008-2014. Note that different species compositions typically lead to 

different recovery rates. 

 

 
Figure A-XVI : The average number of other vessels that made a haul in the same area and day as 

a control vessel (left), and the difference in the average number of other vessels pre- and post-

intervention (right).  
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Figure A-XVII : Average proportion of monthly effort allocated to NMFS management areas by 

treated vessels. 

 

 

Figure A-XVIII : Average proportion of monthly effort allocated to NMFS management areas by 

control vessels. 

 

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 101112

509 513 514

516 517 521

541 542 543

2008-2010 2011-2013

P
ro

p
o

rt
io

n
 o

f 
h
a

u
ls

Month

Treated Group

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 101112

1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 101112

509 513 514

516 517 521

541 542

2008-2010 2011-2013

P
ro

p
o

rt
io

n
 o

f 
h
a

u
ls

Month

Control Group



12 

 

Figure A-XIX : Point estimates of the displacement, quota, and value mechanism effects from the 

SEM model, constraining the treatment effect on price in 2011 to be zero.  

Note: The color of the markers indicates statistical significance of estimates based on different 

critical p-values (p). 

 

 

Figure A-XX: Net royalties and net transfers from monetary quota transactions. 
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Appendix B. SUPPLEMENTARY DISCUSSION 

B.1. Parallel trends assumption 

We are conscience of the fact that having only three pre-intervention years is not ideal for 

supporting our claim of parallel trends; however, we are limited by the fact that our main outcome 

variable net revenue is constructed using information from the EDRs, which were not collected 

until 2008. We do, however, have time series for several of the intermediary outcome variables—

i.e., wholesale revenue, average wholesale price, and harvest—that go farther back in time, well 

before the implementation of A80. Because net revenue, our main outcome variable, only goes 

back to 2008, we cannot estimate our models using the earlier time period; however, we can use 

the longer time series for the intermediary variables to shed light on whether our parallel trend 

assumption is valid.  

We investigate whether treated and control units follow a parallel trend for the previously 

mentioned variables, along with a newly constructed variable (harvest allocation), for the 

preintervention years 1992 to 2010. Since quotas were not introduced until 2008, we do not have 

information for this variable in the pre-A80 years. However, to see if the treated and control groups 

had differential trends in the TACs for their “specialized” species, we take each vessel’s share of 

a species’ allocation under A80 (which was determined by historical harvest patterns), multiply 

this share by the year-specific TAC for that species, and sum across all species for each vessel to 

create a vessel’s “harvest allocation”—i.e., what a vessel’s total harvest allocation would have 

been had there been quota shares. 

Error! Reference source not found. shows the annual averages for these four variables 

for the treated and control groups between 1992 and 2014, along with the linear time trend over 

the pre-intervention years (1992-2010). We also test the null hypothesis that the linear trend in 
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each variable is different between the two groups during the pre-intervention years using the 

following model (i.e., Ho: δ=0): it i t t i ity year year treat vf b d= + + ³ +.  

In general, the time series for each variable appear to move in parallel in the pre-

intervention years, particularly in the most recent years before the closure (i.e., between 2002 and 

2010).  Note that the period 1992-2010 spans multiple regulatory, economic, and biological shifts, 

and thus the further we go back in time, the more likely we are to find divergences from the parallel 

trend. For example, Amendment 80 was introduced in 2008, Atka mackerel and yellowfin sole 

prices declined in 1998, flatfish TACs plummeted around 2000 in response to increasing TACs 

for pollock,45 and flatfish prices crashed in 2008 and 2009. Nevertheless, there does not appear to 

be a structural break during this period for any of the variables. Indeed, while there are some years 

in which the treated and control groups averages do not appear to move in parallel, we cannot 

reject the null that the linear time trend is different between the treated and control group for any 

of the four variables: harvest (δ=-0.13; p-value=0.26), wholesale revenue (δ=-0.04; p-value=0.74); 

wholesale price (δ= 0.04; p-value=0.56); and harvest allocation (δ=0.03; p-value=0.48) (inference 

by permutation). 

While we cannot do this exercise for our main outcome variable (net revenue), we believe the 

parallel trends for the four variables depicted in Error! Reference source not found. provide 

sufficient evidence that the fundamental differences between the treated and the control groups 

that influence economic outcomes is, for the most part, time invariant. 

                                                 

45 Recall that the sum of all groundfish TACs in the Bering Sea and Aleutian Islands is constrained by a 2 million 

metric ton “ecosystem” cap, so that as pollock TACs went up, flatfish TACs went down well below their allowable 

biological catch. 
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B.2. Non-recursive SEM for identifying mechanisms 

In Figure II  and Section III.F, we present a linear system of equations to model the causal path of 

the closure on net revenues in order to decompose the total effect of the closure into three different 

mechanisms. Perhaps the largest assumption in our treatment effect decomposition is the 

assumption that the system is recursive—i.e., that there are no feedback loops or simultaneous 

relationships between the endogenous variables of the system. As we point out, such systems have 

the benefit of being identified with a certain error correlation structure (Brito and Pearl 2002) and 

the direct and indirect effects are easily estimated as the regression coefficients 
nd  in the system 

of equations (5). However, there are two particular relationships in which the recursive assumption 

is suspect—namely, the relationships harvest price  and harvest cost . We explore each of 

these relationships below in greater detail and analyze the extent to which assumptions regarding 

these relationships influence our results. 

B.2.1. Relationship between harvest and price 

In Section III.C, we argue that harvests by the A80 fleet can influence the wholesale price they 

receive because A80 harvests for many species, such as Atka mackerel, make up a large portion 

of their respective world markets. The recursive nature of the causal diagram in Figure II  therefore 

assumes that prices do not affect harvests. There are several reasons why we believe that the 

relationship price harvest  is minimal or non-existent. First, price is a weighted average of 

wholesale prices ($/1,000 mt) across species, where the weight for a particular species is equal to 

its share of a vessel’s wholesale production. Therefore, while a change in price for a particular 

species may shift harvests from one species to another, the total harvest across all species is not 

likely to change. Second, the quota for the A80 fleet places an upper bound on annual harvest, and 

thus, a change in price is only likely to influence harvest if prevailing prices are too low (or costs 
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too high) to justify exhausting quota. While the quota for some species does remain unharvested 

at the end of the season (Figure A-XI), this is largely due to a catch-quota imbalance whereby the 

quota for one species is binding (e.g., yellowfin sole and Pacific cod), preventing the quota for 

other species from being harvested (e.g., rock sole and flathead sole) (Abbott, Haynie, and Reimer 

2015). 

B.2.2.  Relationship between harvest and cost 

As specified, the system of equations in (5) assumes that harvests influence costs but that costs do 

not influence harvests. Since cost is measured as the annual expenditures on variable inputs, such 

as labor, fuel, maintenance and repair, etc., changes in annual harvests likely affect the use of 

variable inputs, thereby influencing annual costs for a given set of input prices. However, annual 

expenditures also vary with input prices, thereby influencing the marginal cost of harvesting, 

which may influence total harvests. If this is the case, then harvests and costs are simultaneously 

determined, and ignoring the relationship cost harvest  would create endogeneity bias in our 

estimate of the relationship harvest cost . However, we believe that the relationship 

cost harvest  is minimal or non-existent. Similar to the argument above, if quota is a binding 

constraint on harvest, then the shadow value of harvest is likely positive—i.e., vessels would 

harvest more if they were not limited by quota. If this is the case, then increases in the marginal 

cost would only reduce harvest if the change was large enough to push the shadow value to zero. 

B.2.3. Simultaneous equations for harvest, cost, and price 

To determine the existence of a simultaneous relationship between harvest, prices, and costs, we 

need to exploit exogenous variation in harvest that is not directly related to price and costs, and 

exogenous variation in price and cost that is not directly related to harvest. With respect to cost, 

we specifically need to isolate variation in that does not stem from the expansion of harvest, but 
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rather stems from variation in marginal cost of production. 

One potential option for exploring the existence of simultaneous relationships between harvest, 

cost, and price is to specify the aforementioned feedback mechanisms in the system of equations 

in (5) and estimate the system as a whole. Specifically, we can revise the second, third, and fourth 

equations in system (5) to be: 

 

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

e x y g

it i t t i t it it it it

c h

it i t t i t it it

f k

it i t t i t it it

harvest treat post price cost quota

price treat post harvest

cost treat post harvest

a f q d d d d y e

a f q d d y e

a f q d d y e

= + + + ³ + + + + +

= + + + ³ + + +

= + + + ³ + + +

x

y

z

  (B.9) 

where price, cost, and the exogenous vector x are included in the harvest equation, and the 

exogenous vectors y and z are added to the price and cost equations, respectively, and excluded 

from the harvest equation. In this specification, y and z act as instruments for price and cost, 

respectively, in the harvest equation, while quota and x act as instruments for harvest in the price 

and cost equations. If the recursive nature of the system of equations in (5) is true, then we would 

expect the parameters   and   in the harvest equation to be equal to zero and harvest to enter 

into the price and cost equations exogenously.  

While it is possible to test for endogeneity by estimating the full system of equations in (B.9) 

using three-stage least squares (3SLS) or full-information maximum likelihood, there are several 

reasons why we do not follow this approach. Although 3SLS produces more efficient estimates 

(asymptotically) by exploiting correlation in the error terms across equations, it also has the 

disadvantage of producing inconsistent estimates for a single equation if any of the other equations 

have invalid and/or weak instruments (Wooldridge 2010). This is especially relevant for our case 

given the challenge of finding instruments for harvest, price and cost that satisfy both the exclusion 

and independence assumptions while also having a strong enough first-stage relationship so as to 

avoid weak instrument bias (e.g., Fissel et al. 2015b). In general, given the aggregate nature of our 
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data, the inclusion of annual and vessel fixed effects leaves limited residual variation in the 

instrument with which to isolate exogenous variation in the variable of interest, resulting in first-

stage relationships that are relatively weak. Thus, to prevent any cross-equation contamination, we 

estimate the equations in (B.9) separately using an instrumental variables (IV) approach. 

Table B-I reports the point estimates for the parameters of concern in the system of equations 

in (B.9). We report estimates using ordinary least squares (OLS), which assumes the system of 

equations in (5) is recursive, as well as those using two-stage least squares (2SLS) and limited-

information maximum likelihood (LIML).46 Column (1) reports the OLS and IV estimates for the 

parameter   in the price equation using quota and an index of biomass for the six target species 

for the A80 fleet.47 Both the 2SLS and LIML estimates are very similar to the OLS estimate, but 

are statistically insignificant with standard errors twice the size of the OLS estimate. P-values for 

overidentification and exogeneity tests are large, suggesting that the instruments are in fact valid 

and that harvest enters into the price equation exogenously. However, this must be interpreted in 

light of a relatively small partial F-statistic from the first-stage regression. For example, using the 

Stock and Yogo (2002) criteria for weak instruments, we can only reject the null hypothesis that 

the instruments are weak if we are willing to accept a rejection rate of at most 10% of a Wald test 

of the parameters in price equation at the 5% level (see Cameron and Trivedi 2005). The similarity 

in the estimates and standard errors between the 2SLS and LIML estimators, however, suggests 

that weak instruments may not be a problem in this case.  Note that we are not able to estimate   

in the harvest equation due to a lack of valid instruments for price. Nonetheless, we use the 

                                                 

46 Stock, Wright, and Yogo (2002), among others, suggest that the LIML estimator performs better than 2SLS when 

instruments are only weakly correlated with the endogenous variable. 
47 Specifically, the biomass index uses the annual estimated biomass from the NMFS stock assessments for rock sole, 

yellowfin sole, flathead sole, Pacific cod, Pacific ocean perch, and Atka mackerel, and computes a weighted average 

of biomass for each vessel, where the weight for each species is equal to its share of a vessel’s total quota. 
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evidence suggested by the IV estimators of the price equation, in addition to our earlier argument 

for why price is not likely to affect harvest, to conclude that a recursive relationship exists between 

harvest and price—i.e., harvest enters exogenously into the price equation, and in turn, price does 

not belong in the harvest equation. 

In contrast to the price equation, the exogeneity of harvest in the cost equation is less clear. 

Column (2) of Table B-I reports the OLS and IV estimates for the parameter   in the cost 

equation, using quota and biomass as instruments for harvest.48 Both the 2SLS and LIML 

estimators produce quite different estimates from the OLS estimator, reducing the estimate of   

towards zero while nearly doubling the standard errors. The weakness of the instruments is evident 

in both the partial F-statistics from the first-stage regression and the slight difference between the 

2SLS and LIML estimates.  Thus, it is difficult to tell whether differences between the IV and OLS 

estimates arise from an endogenous relationship between harvest and cost or from the finite-

sample bias and imprecision of the IV estimators with weak instruments. The story becomes less 

clear when considering the OLS and IV estimates of   in the harvest equation (column 3), using 

fuel prices and crew costs per day as instruments for cost.49 The OLS estimator is positive and 

significant, which is opposite of what we would expect if cost was exogenously determined by 

shifts in the marginal cost of production. Both the 2SLS and LIML estimates of are negative 

and close to zero, with standard errors that are roughly double those produced by the OLS 

estimator, which is not surprising given the weakness of the instruments (according to the partial 

                                                 

48 It could be argued that biomass also affects cost by directly influencing the unit cost of harvest, and thus, biomass 

does not satisfy the independence assumption. However, estimating the cost equation using only quota as an 

instrument for harvest has very little effect on the estimates or test statistics reported in Table A3. 
49 The variables fuel price and crew cost per day were both calculated using cost and input usage information 

reported in the EDRs. Specifically, fuel price is equal to a vessel’s annual expenditures on fuel divided by their 

annual consumption of fuel (in gallons). Crew cost per day are computed as the annual expenditures on crew (e.g., 

food, benefits, recruitment, travel, insurance etc., but not remuneration), divided by the number of crew days (i.e., 

the average crew on board times the number of days a vessel was active). 
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F-statistic). The notion of using crew cost and fuel price as instruments comes into question given 

the relatively low p-value for the overidentification test; indeed, fuel price has almost no first-stage 

relationship with cost after omitting crew cost as an instrument and controlling for vessel and 

annual fixed effects.  

Altogether, the evidence supporting the recursive relationship ὬὥὶὺὩίὸᴼὧέίὸ is muddled by 

the existence of weak instruments. Nonetheless, we conclude that we cannot reject the existence 

of a recursive relationship between harvest and cost based on the following pieces of evidence. 

First, the positive OLS estimates in columns (2) and (3) of Table B-I lend support to the existence 

of the ὬὥὶὺὩίὸᴼὧέίὸ relationship. For instance, if  π, then we would expect the OLS 

estimate of   to be unbiased and negative. The fact that the estimate of   is actually positive 

suggests that   is in fact greater than zero—i.e., the estimated ὧέίὸOὬὥὶὺὩίὸ relationship is 

actually picking up the ὬὥὶὺὩίὸᴼὧέίὸ equation. Second, notwithstanding the weak instrument 

problem, the regression-based test for endogeneity proposed by Cameron and Trivedi (2005) easily 

rejects the exogeneity of cost in the harvest equation, and the IV estimate of    is not statistically 

different from zero, suggesting that cost does not belong in the harvest equation. In contrast, we 

cannot reject the hypothesis that harvest is exogenous in the cost equation, even though the IV 

estimate of   is not statistically different from zero. Thus, we cautiously conclude that harvest 

enters into the cost equation exogenously, and continue to use the estimate of   provided by the 

system of equations in (5) and reported in Table IV since it is more precise than the IV estimate 

reported in Table B-I. 

B.3. Permutation Inference 

As we discuss in Section III.G, we use permutation-based inferential techniques for all our models: 

the DnD, PSW, SCM, and SEM. Permutation inference tests whether the value of a test statistic is 
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due to chance by comparing the value of the test statistic to a reference distribution, which is 

generated by recalculating the statistic for many permutations of the data assuming that the null 

hypothesis holds. If the test statistic is large (or small) relative to the reference distribution, then 

this provides evidence that the null hypothesis does not hold.  

As an example, consider the parameter associated with the treatment assignment variable in 

the harvest equation (i.e., ŭe) for the SEM model (equation 5). Under the null hypothesis, ŭe=0, and 

therefore, harvest for each individual will be the same regardless of which treatment is received.  

We can therefore compute the reference distribution for ŭe under the null hypothesis by estimating 

the parameters of the system of equations in (5) for all possible treatment assignments across 

individuals, keeping each estimated “placebo” value of ŭe. A p-value can then be constructed by 

calculating the fraction of the placebo effects that are greater than or equal to the original estimated 

value of ŭe.  

Permutation-based inference for non-discrete variables is similar. As an example, consider the 

parameter on quota in the harvest equation (i.e., ŭg) for the SEM model. Under the null hypothesis, 

ŭg=0, and therefore, harvest for each individual will be the same regardless of how much quota is 

received.  We can therefore compute the reference distribution for ŭg under the null hypothesis by 

estimating the system of equations in (5) for randomly assigned values of quota in the data, keeping 

each estimated “placebo” value of ŭg. A p-value can be constructed the same as above.  

Permutation-based inference for the “mechanism effects” in equations (6) through (8) is similar 

to the description above. For example, under the null hypothesis, the treatment assignment has no 

influence on net revenue, which implies that the “quota effect” (for instance) is equal to zero. We 

can therefore compute a reference distribution of quota effects under the null hypothesis by 

estimating the quota effects for all possible treatment assignments, and compute the p-value as 
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discussed above. 

B.4. Tables 

Table B-I: Instrumental variables and ordinary least squares point estimates. 

 ὬὥὶὺὩίὸᴼὴὶὭὧὩ   ὬὥὶὺὩίὸᴼὧέίὸ   ὧέίὸᴼὬὥὶὺὩίὸ   

 (1) (2) (6) 

OLS -0.019*** 0.499*** 0.310*** 

 (0.006) (0.143) (0.107) 

2SLS -0.017 0.096 -0.123 

 (0.012) (0.283) (0.215) 

LIML -0.017 0.065 -0.173 

 (0.013) (0.307) (0.173) 

First stage: partial F-statistica 5.124 3.033 2.880 

Exogeneity: p-valueb 0.808 0.102 0.003 

Overidentification: p-valuec 0.529 0.405 0.133 

Instruments 
quota quota crew cost 

biomass biomass fuel price 

Controls  crew cost quota 

 fuel price biomass 

Note: IV point estimates are obtained using both two-stage least squares (2SLS) and limited-information maximum 

likelihood (LIML). Standard errors are in reported in parentheses using the Huber/White sandwich estimator.  
a Partial F-statistic using instruments only from the first-stage regression. 
b P-value from regression-based test of Ho: variable is exogenous (Cameron and Trivedi 2005). 
c P-value from Wooldridge's (1995) robust score test of overidentifying restrictions. 

 

 


